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As networks have permeated our world, the economy has come to resemble an ecol-
ogy of organisms, interlinked and coevolving, constantly in flux, deeply tangled, ever
expanding at its edges.

Kevin Kelley

Most people . . . would agree that a fundamental property of complex systems is that
they are composed of a large number of components or “agents,” interacting in some
way such that their collective behavior is not a simple combination of their individual
behaviors.

Mark Newman

The importance of networks permeates the world today. From biology to social systems,
from the brain to the Internet, networks play an important and central role in the way the world
works. In the last ten years, due in part to large increases in computational power, large-scale,
real-world networks have received much attention from a variety of fields of study.

Within the artificial intelligence community, networks appear some form in nearly every
subdiscipline: knowledge representation, inference, learning, natural language processing, multi-
agent systems, analogical reasoning, and many others. The goals of this special issue are to
provide a sampling of research efforts focused on how networks can be used in AI systems, and
to facilitate cross-communication among subdisciplines that are studying networks from different
perspectives.

The seven papers we include here cover a broad range of network-inspired AI research—in
natural language processing, data mining, the Semantic Web, peer-to-peer networks, multi-agent
systems, analog networks, and the modern social network of the “blogophere.” Each article rep-
resents a snapshot of the area it describes; for example, the collective classification problem
surveyed by Sen et al. is just one of many problems within the emerging research area of link
mining. Moreover, networks are influential in many other areas of AI that are not represented
here, including Bayesian networks and graphical models, sensor networks, swarm systems and
cellular automata, graphical games, trust and reputation systems, and computational organiza-
tional design, just to name a few.

Table 1 summarizes the articles in this collection by characterizing the nature of the networks
that are the focus of each of the seven papers.

1 Basic Graph Theory

In reading the articles presented here, some basics of graph and network theory may be useful
for the reader who is not familiar with these terms. We start with some basic terminology:

• A graph G is defined to be a pair (V,E), where V is a vertex set and E is an edge set (see
below). The terms graph and network are often used interchangeably.

• The finite vertex set V is a set of descriptors that describe the vertices in the graph.
Each vertex may just have an identifier, or it may have an arbitrarily complex set of
attributes. The terms vertex and node are often used interchangeably. Depending on
the application, nodes may also be referred to as agents or entities.
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Authors Topic Nodes Edges Tasks
Radev &
Mihalcea

Natural
language
processing

Words, word
senses,
sentences,
documents

Co-occurrences;
collocations;
syntactic structure;
lexical similarity

Analyze syntax; iden-
tify lexical semantics; re-
trieve and summarize
text; extract keywords

Berners-Lee &
Kagal

Semantic
Web

Agents,
terms,
ontologies

Connections
between
communities;
subtask
relationships;
ontological
relationships

Disseminate knowledge;
construct and share on-
tologies; provide and re-
quest services; create
new communities

Menczer,
Wu, &
Akavipat

Peer-to-peer
networks

Agents “Social” connections
along which queries
flow

Locate relevant knowl-
edge sources; learn which
peers can answer queries

Pearce,
Tambe, &
Maheswaran

Cooperative
multi-agent
systems

Agents Interactions, joint
reward structures

Multi-agent plan co-
ordination, meeting
scheduling, teamwork
(e.g., RoboCup soccer)

Mattiussi,
Mrabach,
Dürr, &
Floreano

Analog
networks

Dynamical
devices

Signal flows with
varying strength

Synthesize and reverse-
engineer analog networks
(e.g., gene regulatory
networks and analog
electronic circuits)

Finin,
Joshi,
Kolari,
Java,
Kale, &
Karandikar

Blogosphere Web pages,
blog postings,
bloggers, blog
sites

Social networks;
comments;
trackbacks;
advertisements;
tags; RDF data;
metadata

Recognize spam blogs
(splogs); find opinions on
topics; identify commu-
nities of interest; derive
trust relationships; de-
tect influential bloggers

Sen,
Namata,
Bilgic,
Getoor,
Gallagher, &
Eliassi-Rad

Social and
natural
networks

Entities (e.g.,
scientific
articles)

Relationships
among the entities
(e.g., citations or
co-citations)

Perform collective clas-
sification; construct fea-
tures for relational clas-
sification

Table 1: Network types
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• The finite edge set E specifies the relationships between the vertices in the graph. Each
edge e ∈ E is a pair of vertices, which are called the endpoints of the edge. Edges may be
ordered or unordered and also weighted or unweighted. A hyperedge may connect
more than two vertices. Edges are often used to represent relations.

• The degree of a node, ki, is the number of edges that are connected to node i. In
directed graphs, degree can be broken down into “in-degree” (number of edges coming into
the node) and “out-degree” (number of edges pointing out of the node).

2 Network properties

A number of properties prove to be useful in graph theory and social network theory for analyzing
and understanding the behavior of graph structures.

• The path length between two nodes is the minimum number of edges that must be
traversed to move from one node to the other in the graph. The average path length is
an average across all pairs of nodes in the graph.

Real-world graphs often exhibit short average path lengths, meaning that the average
path length is less than would be expected in a random graph. This “small-world effect”
was first recognized by Milgram [5] in analyzing the number of hops it took for human
subjects to send a piece of postal mail to a predefined destination by following only links
to people whom they knew on a first name basis. This phenomenon is sometimes called
“six degrees of separation,” based on the hypothesis that any two people in the world can
be connected by a six-link “chain” of acquaintances. A game created in the mid-nineties
called “Six degrees of Kevin Bacon” (find a short path connecting any given movie actor or
actress to Kevin Bacon) in fact initiated some of the research work that led to the current
boom in interest in network studies.

Several other properties are related to path length:

– The betweenness of a node i is the number of other pairs of nodes (j, k) whose
shortest paths pass through i.

– The closeness of a node is the average shortest path to all other nodes in the graph.

– The diameter of a graph is the length of the longest of all shortest paths (i.e., it is
the maximal distance between any pair of nodes (i, j)).

• Clustering measures are used to characterize the frequency of transitive relationships in
networks [6, 1, 8]. The clustering coefficient of a network is the ratio of triangles in
a network (sets of three nodes that are all connected to each other) to the number of
connected triples (sets of three nodes in which at least one node is connected to the other
two).

Real-world networks often exhibit excess clustering, in the sense that they have a much
higher (often 2 orders of magnitude or more) clustering coefficient than would be expected
in a random graph of the same size [6]. This is because in many processes that generate
networks, two nodes that are connected to a common neighbor are more likely to become
connected.

• The degree of a node is also sometimes called its degree centrality, since the number
of edges that are connected to a node give an indication of how “central” it is to the
network. The degree distribution of a network is the frequency of occurrence of nodes
with each degree. A useful summary property is the network’s average degree, which
can be thought of as the density of the network. The normalized standard deviation
of the degrees of the nodes can be used to characterize how much variability there is in
the network density. The degree correlation of adjacent nodes in a network indicates
whether neighboring nodes are likely to have similar degree.
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(a) ρ = 0.0 (b) ρ = 0.1 (c) ρ = 0.3

Figure 1: Three increasingly random small-world networks: (a) a small world with no shortcut
links; (b) the same small world with a few shortcuts; and (c) a small world with many shortcuts,
which begins to resemble a random graph. All three of the networks are constructed from a one-
dimensional lattice where nodes are connected to K = 2 other nodes in each direction, based on
physical proximity. This particular choice of initial layout is deliberate in that it ensures a high
initial clustering coefficient.

Many real-world networks have highly skewed degree distributions, with high normalized
standard deviation. In particular, the degree distribution in real-world networks often
follow a power law, where the probability of a node in the network having degree k
is proportional to k−γ for some parameter γ [6] (typically $gamma$ is between −2 and
−3). Such networks have a hub-and-spoke structure, with some nodes having very large
degree [1].

3 Network models

A variety of network models have been proposed to represent various types of network formation
processes and graph behaviors. Several of the most common models are described below.

• Regular graphs have a homogeneous connectivity pattern for all of the nodes in the
graph. In these graphs, the degree distribution is trivial: all nodes have the same degree.
Examples of regular graphs include lattices, hyper-cubes, and fully connected networks (in
which all nodes are connected to all other nodes).

The coordination number [7] of a lattice graph determines the number of connections
that each node has with its spatial “nearest neighbors” in each dimension. An example of
a one-dimensional lattice with K = 2 is shown in Figure 1(a).

• Random graphs were first introduced by Erdős and Rényi [4]. A random graph Gn,p

consists of n nodes where p denotes the probability of an edge existing between each
pair of vertices. Random graph models have been widely studied, in part because their
properties can be computed analytically. For instance, the expected number of undirected
edges in Gn,p is n(n− 1)p/2, and the average degree of a vertex is k = p(n− 1).

A random geometric graph is a special case of a random graph that is generated by
randomly placing N agents in the unit square, then connecting pairs of agents if they are
within some specified distance d of each other [3]. More specifically, two agents, i and j
are connected in a random geometric graph if d(i, j) < φ, where φ is a threshold parameter
of the model. Figure 2 shows an instance of a random geometric graph with φ = 0.09.

• The small-world network model of Watts and Strogatz [8] is an attempt to produce
networks that exhibit the real-world properties of excess clustering and short average path
length. Small-world networks have properties that lie between those of regular (lattice)
networks and random graphs.

Small-world networks are constructed by randomly “re-wiring” each edge in a lattice net-
work with some probability ρ. This process results in shortcut connections across the
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Figure 2: An instance of a random geometric graph on the unit square with 400 nodes and
φ = 0.09.

network, as seen in Figure 1. (When edges are replaced with random shortcuts with prob-
ability ρ = 1, the resulting graph is a random graph.)
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Figure 3: An example of a scale-free network structure with 250 nodes: (a) a rendering of the
network that clearly shows the hub-and-spoke structure, and (b) a log-log plot of the cumulative
degree distribution of the network shown in (a). Note that a linear curve in a log-log plot implies
a power-law behavior of the underlying system.

• The scale-free graph model is motivated by the empirically measured degree distributions
of the Internet and the World Wide Web (WWW) [1, 2]. The model is a highly intuitive
model based on the way that many networks are believed to evolve and grow in the real
world.

The generation of scale-free graphs has two simple rules:

1. growth: at each time step, a new node is added to the graph, and

2. preferential attachment: when a new node is added to the graph, it attaches
preferentially to existing nodes with high degree.
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Figure 3 shows an example of a scale-free network structure, and the power-law degree
distribution that it exhibits.
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